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The viscous secondary flow ahead of an infinite cylinder 
in a uniform parallel shear flow 

By ALAR TOOMRE 
Mechanics of Fluids Department, University of Manchester 

(Received 29 May 1959) 

A simple method is presented in this paper for calculating 
(a )  the secondary velocities, and 
( b )  the lateral displacement of total pressure surfaces (i.e. the ‘displacement 

in the plane of symmetry ahead of an infinitely long cylinder situated normal to 
a steady, incompressible, slightly viscous shear flow; the cylinder is also per- 
pendicular to the vorticity, which is assumed uniform but small. The method is 
based on lateral gradients of pressure, these being calculated from the primary 
flow alone. Profiles of the secondary velocities are obtained at several Reynolds 
numbers ahead of two specific cylindrical shapes : a circular cylinder, and a flat 
plate normal to the flow. The displacement effect is derived and, rather sur- 
prisingly, is found to  be virtually independent of the Reynolds number. 

effect ’) 

1. Introduction 
The inviscid mathematical theory of the secondary flow caused by an infinite 

cylinder situated perpendicular to a steady, incompressible, weakly sheared 
parallel flow, and also to the vorticity of that stream, was developed by Lighthill 
(1956) in a paper titled ‘Drift ’. He investigated the bending and stretching 
inflicted upon vortex lines as they are convected around the cylinder by the 
primary flow along planes perpendicular to the cylinder. Lighthill found a. 
remarkably simple expression for the secondary flow thus induced, which 
showed that to the order of the approximation involved this flow is entirely 
parallel to the cylinder, and is independent of the distance along the 
generators. 

When one tries to apply this theory to derive certain results of practical 
interest, namely, the magnitude of the cross-flow very near the cylinder, and 
the ‘ displacement effect ’, certain shortcomings of the theory become apparent. 
The ‘ displacement effect ’ is the distance by which a curve of pressure measured 
at holes flush with the upstream face of a cylinder, and plotted against height, 
would appear shifted-in the direction of decreasing total pressure-from the 
true total pressure profile of the undisturbed flow. A particular application for 
this displacement effect arises in determining a non-uniform velocity profile by 
means of a transverse cylindrical total pressure probe (e.g. Livesey 1956). 

The inviscid theory predicts a logarithmically infinite cross-flow velocity on 
the surface of the cylinder. But actually this velocity reaches a maximum a 
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short distance away, and of course vanishes at the surface itself because of the 
no-slip condition. It might be argued that the logarithmic singularity is a mild 
one, and that even a wild guess of the thickness of the boundary layer of the 
secondary flow could be used to provide a fair approximation of the actual 
maximum secondary velocity. This turns out to be true. However, there 
remains the fact that inviscid theory predicts a displacement effect which 
is likewise infinite, and it is harder to see any means of adjusting this result so 
as to give a reasonable estimate. In  short, a viscous theory from the outset would 
be desirable, and the present note is a contribution towards that end. 

The physical basis of the current work will be that when the shear is assumed 
small, the fluid moves almost precisely in a two-dimensional manner along 
planes imagined drawn perpendicular to the cylinder, although in each of these 
laminae the upstream velocity is one which is appropriate to that particular 
value of the ordinate. However, as velocities vary slightly between adjoining 
planes, not only will the fluid be subjected to stresses which determine its 
essentially two-dimensional motion, but it will also be subjected to a small 
lateral pressure gradient which causes a certain amount of cross-flow. 

The approximation which ‘stacks ’ these two-dimensional (and, in general, 
viscous) flows one above the other will be referred to in this paper as the primary 
$ow. The term secondaryJlow will denote the first-order correction to the former; 
it is, in fact, the above cross-flow. We shall assume that higher-order corrections 
will be much smaller, and shall ignore them. The important thing to bear in 
mind about this approach is that the secondary velocity is considered to arise 
from fluid elements being convected with the known primary velocities across 
known lateral pressure gradients, determined from the primary flow alone. At 
the same time, they are also subjected to shear stresses arising from their 
lateral motion, and must obey boundary conditions. 

Although this problem is considerably simpler than trying to solve simul- 
taneous Navier-Stokes equations in three dimensions, in its complete form it 
still remains an ambitious task. In  order to further simplify matters, one might 
now be tempted to suppose that the boundary layer of the secondary flow is 
considerably thicker than that of the primary flow, and thus to regard the 
primary flow as inviscid at least around the forepart of the cylinder. Such an 
assumption would, unfortunately, be mistaken. The thicknesses of these 
boundary layers are of the same order because the relevant speeds of convection 
are the same for both. This means that a complete viscous secondary flow 
solution will inescapably involve the primary boundary layer; and the com- 
putation of that alone is known to be very cumbersome. 

For this reason calculations have been carried out in this paper only for the 
flow in the plane of symmetry that extends upstream from the cylinder. 
Fortunately, we can obtain useful results there, but with much reduced 
labour. (As a matter of convenience, we consider only cylinders that are 
symmetrical, and hence non-lifting, though of otherwise fairly arbitrary shape.) 
I n  the plane of symmetry, the geometry and the assumed small uniform shear 
together permit significant simplifications to be made in the equation of motion 
for the cross-flow component of velocity. As a result, just an ordinary linear 
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differential equation has to be solved to obtain the desired secondary flow. The 
primary flow in this plane is taken to consist of an outer part calculated from 
ordinary potential flow and matched near the cylinder to Hiemenz’s solution for 
viscous stagnation point flow. To conclude $2, the above methods are used to 
compute some secondary velocity profiles for two particular cylinders. 

The displacement effect is studied in $3, where it is found, to a good first 
approximation, that this does not depend on the Reynolds number. It is 
indicated that an intuitively based adjustment of the inviscid theory to find this 
quantity would have been considerably mistaken. Next, the somewhat un- 
realistic nature of the assumption of unbounded shear flow is discussed in 
connexion with the displacement effect which would be observed in practice. 
Finally, two specific examples are again worked out in detail. 

2. Secondary fiow velocity 

figure 1. The velocity far upstream has the components 
Choose a system of right-handed Cartesian co-ordinates as illustrated in 

vZ = V,(y) = U + A y ,  vU = V, = 0, (1) 
Y 

vX = U+Ay I 

FIQURE 1. Cylinder in shear flow, showing co-ordinate axes. 

U and A being constants. It is thus already assumed that the flow is parallel 
and that the shear can be approximated as uniform. We further require that the 

aAIV, < 1, ( 2 )  
latter also be small, or that 

where a is a typical dimension of the cylinder. (In the two examples to be 
treated later, 2a = width.) It might also be added, to avoid any possible 
confusion, that the region of interest does not include V, c 0. 

The first approximation to the actual flow by the primary flow has been 
mentioned already. It supposes that the actual velocity v at any point (x, yo, z )  
just equals the velocity vl(x,z;yo) that would result from a uniform stream of 
speed U,(yo) flowing past the cylinder. Consequently, v, and v, must together 
obey the two-dimensional equations of motion and continuity, and satisfy the 
boundary conditions v, = 0 at the surface, and v, = (U,, 0,O) at infinity. How- 
ever, vlV = 0 everywhere. Note that if the Reynolds number R did not vary 
with the ordinate y ,  then the following similarity relation would hold exactly : 

v , ( z , z ;y )  = ( U + A y )  u(z,z). (3) 

As it is, R varies slowly, but (3) remains sufficiently exact to be used hereafter. 
10-2 
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It becomes evident on closer examination that the primary flow quite 
accurately depicts the actual motion in the planes perpendicular to the cylinder, 
but does not do so well as regards the flow parallel to the cylinder. We begin by 
writing down the equation of motion for vv: 

Near the cylinder ap/ay is generally of the order of (a/ay) [&p( U + AY)~] = pAU,. 

Consequently, vy is of the order of - - ” dx or of O(aA) ,  whereas the primary 

flow had estimated it as zero. It is interesting that vy is independent of y to a 
rough approximation; this can be confirmed by more detailed analysis (e.g. 
equation (9)). This was also one of Lighthill’s conclusions. 

On the other hand, if one were to write the dynamical equation for v, (or for 
v,) and in it insert v, = vlx (or v, = w ~ ) ,  then a number of terms would at once 
drop out since they would constitute the two-dimensional equation of motion, 
leaving only the terms v(a2v1,/ay2) and ev(avlx/ay) (or their analogues). The 
former is quite negligible because of (3). The latter is of O(Av,), whereas a 
typical vanished term such as v,(av,/ax) would be of O( U2/a) .  This suggests that 
errors in vx and w, caused by representing the actual flow by the primary flow 
alone amount to UO(aAv,/U2) = O(a2A2/U), or only about (aA/U)  times those 
for vy. 

S P V ,  aY 

Of course, a solution must also satisfy the equation of continuity 

divv = 0. ( 5 )  

But since vls and vlz already obey its two-dimensional equivalent, and since 
vy = O(aA) is not a function of y to the first approximation, there is no difficulty 
on this point. Thus we are now justified in stating that the secondary flow 
consists entirely of motion directed parallel to the cylinder. Only one velocity 
component, vy, remains to be computed, whereas v, + vb and v, = v, are 
already presumed known as functions of position. In  addition, the pressure and 
thus ap/ay are already determined from the requirements of the primary flow. 

It will be of interest to consider briefly the secondary flow which can be 
calculated from this approach should the fluid be inviscid. In  that case, (4) 

where it has been reasonably assumed that w,(av,/ay) is negligible. Repre- 
senting by u the magnitude of the vector u which was defined by (3), and 
noting that Bernoulli’s equation, 

P-Pm = +P(U2,--?), (7) 

gives 2 = pA Ul( 1 - u2), (8)  aY 
it becomes possible to write this explicit solution of (6): 
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The integration is to proceed along a streamline of the primary flow, and 
ds = - (l/a) (ds2+dz2)*. Equation (9) also assumes that v, = 0 at x = xo; the 
reason why x,, does not necessarily equal - co appears in the last paragraphs of 0 3. 

It is a simple matter to demonstrate that when xo = -00, (9) agrees exactly 
with Lighthill’s corresponding result (equation (43)), which he obtained from 
vorticity considerations. The coincidence should cause no surprise, as the 
methods are, of course, fundamentally related. On the other hand, it does serve 
as a cross-check to show that the approximations involved are identical. This 
modest success of the pressure gradient method should, however, not disguise 
the fact that the vorticity method seems definitely superior for calculating 
higher-order corrections to the inviscid flow. 

After these preliminaries, let us confine our subsequent attention to the 
viscous problem in that part of the plane of symmetry, z = 0, which lies 
upstream of the cylinder, and where considerable simplifications of (4) are 
justified. In  this plane one omits quite readily the terms v,(av,/ay) and v,(av,/az), 
the former because v, 4 U, and (av,/ay) = 0, and the latter because v, = 0 due 
to symmetry. The term v(a2vy/ay2) is also thoroughly negligible, again because of 
(av,/ay) = 0. The only omission which calls for lengthier consideration is that of 
v(Pv,/azZ). The ratio of this term to the significant viscous term v(a2v,/ax2) is 
usually of 0(P/a2) ,  where 6 is the stagnation point boundary layer thickness; 

(10) thus the approximation a+,lazz azv,/axz 

requires an R at least large enough to make u2 a2. However, it should be 
noted that the word ‘ usually ’ presumes that the cylinder is sufficiently blunt- 
faced. (By way of contrast, a forward-facing wedge, with an only slightly 
blunted leading edge of radius b, would here require that b2 p S2, a more 
stringent requirement than the previous one.) 

Adopting these restrictions, (4) becomes 

in the plane of symmetry. Together with the boundary conditions 

v,(x = X c )  = v,(x = xo) = 0, (13) 

where the subscript c refers to the cylinder surface, this is a well-set problem. 
However, rather than trying to solve ( 1  1) outright, it  is profitable to split up 

the solution into a viscous inner part and a matching outer part for which the 
viscous term in (11), if not wholly disregarded, is treated as only a small 
perturbation. Since S/a is so small, ap/ay can be assumed equal to pAU, 
throughout the entire viscous solution. Moreover, the primary flow can there 
be approximated by a viscous stagnation point flow against a flat plate for 
which the Hiemenz solution is well known (Goldstein 1938). On the other hand, a 
solution already exists for the outer part in the form of (9); although, in order 
to be more accurate, u(s)  might have to be derived from a potential flow around 
the combined profile of the cylinder and the displacement thickness of the 
boundary layer and the wake. 
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For the inner solution, it is best to replace 2 by the Hiemenz variable 

1 
q = - (U’R)) (xc -x). 

U 

Here U’ is the value of au/as = - (u/V,) (av,/ax) at x = zc that would arise from 
inviscid primary flow ; and the Reynolds number is given a definite meaning by 
R = aU,/v. Then v, is 

fl(7) being a well-tabulated function (see Goldstein 1938, p. 151); also, 

(14) Vl, = U,(u’/R)+f,(t), 

fi N 7-0.6479 
for large 7. Put 

uA 
vv = - uAh(q) = - 7 q(q) .  

U 

Consequently, (1 1) transforms into 

c& 
dT2 dq 
9 +fl(q) - = - 1. 

Puttingf,(q) = fl(q’) dq’, the solution of (16) is 

v 

- 0  

q(q> = - [ e - f o ( g )  Jog e+fo(t‘) d c  d l  + K 

= - 4I(T) + KQII(T). (17) 

Here K is an arbitrary conatant equal to aq(O)/aq; another constant has already 
been disposed of by the requirement q(0)  = 0. 

The integrals qI(q)  and qII(q) were calculated up to 7 = 6 numerically. These 
results are summarized in table 1. Knowing that for large q 

fo - +(7 - 0 ~ 6 4 7 9 ) ~  + const., (18) 

1 
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 
2.8 
3.0 

9A7) 
0~000 
0.020 
0.080 
0.178 
0.312 
0.476 
0.663 
0.867 
1.077 
1.286 
1.487 
1.674 
1.846 
2.001 
2.139 
2-261 

QIIW 

o*ooo 
0.200 
0.399 
0.594 
0.782 
0.959 
1.120 
1.262 
1.384 
1.483 
1.562 
1.623 
1.667 
1.698 
1-719 
1.733 

1 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.2 
4.4 
4.6 
4-8 
5.0 
5.2 
5.4 
5.6 
5.8 
6.0 

nA7) 
2.261 
2.369 
2.465 
2.551 
2.629 
2.700 
2.765 
2-826 
2.883 
2.936 
2.986 
3.034 
3.079 
3.123 
3.164 
3.204 

QnOl) 
1.733 
1.741 
1.747 
1.750 
1.751 
1.752 
1.763 
1.753 
1.753 
1.753 
1.753 
1.753 
1.753 
1.753 
1.753 
1.753 

TABLE 1 
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we can calculate that 

q(5) IY 1-753K - 1.545 - In 5 + + $t-4.. ., (19) 
where t denotes (7 - 0.6479), and where the values of the first two constants 
have been supplied by the numerical integration. It has been pointed out by 
Mr E. J. Watson that the integral qII(r) is also encountered in the study of the 
boundary layer on a yawed cylinder. 

As regards the outer solution, one might not wish to omit the viscous term in 
(11) altogether. However, we would still use (9) to compute vu initially to an 
inviscid approximation, namely vui. The first-order viscous correction to this, 
say vu,, would then be calculated from the following adaptation of (1 1) : 

or, more to the point, from the solution of (20) given as 

By way of illustration, the foregoing analysis is now applied to two specific 
examples: (i) a circular cylinder (denoted by CC)  of radius a, and (ii) a flat plate 
normal to the stream (FP) of width 2a. In  both cwes it is assumed that the 
primary flow outside the boundary layer is adequately described by the 
ordinary potential flow around these cylinders. (This constitutes probably the 
largest single source of error here.) Thus, 

CC: U(S) = 1 -s-'; FP: U(S) = s(l+$)-+ (22) 
(Milne-Thomson 1955). In  order to facilitate the matching of the inner and 
outer solutions, it is desirable that u(s )  = 0 at a distance from the surface equal 
to the displacement thickness 

hence the somewhat artificial definition 
6 = 0*6479~(u'R)-+; (23) 

1 
s = --(z+6). 

a (24) 

Here x = 0 at the centres of both cylinders. 

and integrate to obtain the approximate inviscid outer solutions 
Assuming that vy = 0 at x = -a for the present, we now insert (22) into (9) 

s-1 
1 

CC: -v&A = -++ln-, 
S 

S 
FP : - vUi,kzA = In 

For small values of 5, (25) can be expanded as 

1 
3t 15t2  
8R 32R 

4R"" 

C C :  q(6) = 2+3ln(8R)-ln5--+-- ..., 

FP: q(5) = ln2+*lnR-lnf+- t2 
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A viscous correction to be added to (26) is obtained from (21). When 6 is small, 
it  is found for either of the cylinders that this correction is approximately 

A M  = e2. (27) 

Selecting the value of 6 at which the inner and outer solutions are to be matched 
is somewhat a matter of choice. Here we have decided to equate (19)_with the 
sum of (26) and (27) at 6 = 5 for R = lo3, lo4, lo5 and lo6. The resulting 
secondary velocity profiles are displayed in figure 2. 

(x, -.)/a 
0.08 006 004 002 0 

- R = 103J 

- 

I I I I 

1 

2 

3 
V Y  

aA 
-- 

4 

5 

6 

7 

FIGURE 2. Profiles of L e  viscous secon-Jry flow in the plane of symmetry in --ant of a 
circular cylinder (upper curves) and a flat plate (lower curves). 

3. Displacement effect 

following well-known form : 
Let us return once more to the equation of motion, which we now write in the 

(28) 

where w = curl v. Consequently, if p o  denotes the total pressure (+pw2 + p ) ,  then 

O(4pv2) + pw x v = - vp + pvzv, 

a 
-po ax +p(w x v), = pV2vx. (29) 

In  the plane of symmetry, (w x v), = - w5wy, since wy = v, = 0. We write 
approximately, as before, 

vz = ( U  + Ay) u(x), and vy = - aA h(x). ( 30) 

Hence 
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Insert these into (29), and simplify V2vx to a2vz/ax2, partly by arguments similar 
to those which accompanied (10) and partly because a2vX/ay2 = 0 from (3). 
Then integrate the result with respect to x .  This leaves 

Pa2A2hZ(x’)]z‘ = p a A 2 l X c  h(x’) u ( x f )  dx’, 
xo Z O  

Since avz(xo)/ax = awx(xc)/ax = 0,  and h(xo) = h(xJ = 0, we observe that the 
total pressure at the surface exceeds the total pressure at the same ordinate far 
upstream, a t  x = xo, by the amount 

Apo = paA2 h(x’) u(x’) dx’. s:: (33) 

It is known that the total pressure gradient, apo/ay, is pAU,, and therefore we 
conclude that the displacement of the total pressure towards the region of lower 
pressure is given by 

9 = “A s” h(s’) u(s’)  ds’. (34) 
a v, sc 

Here the dimensionless so and s, correspond to xo and xc, respectively. 

only a small distance Ax from the surface is roughly of the order of 
It happens that the contribution to this expression from a region extending 

(aA/u,) (Axla)2.  

Since the entire Ayla = O(aA/U,),  (34) can to good accuracy be calculated using 
the u(s)  and h(s)  that are given by the inviscid outer soIution, omitting the tiny 
contribution from the inner solution altogether. 

Thus, the remarkable thing about the displacement effect as described by (34) 
is its virtual independence from the Reynolds number. This is hardly what one 
would have anticipated from inviscid considerations. The displacement of 
streamlines, and therefore that of constant total pressure loci, from so to some 
s nearer the cylinder would be given by inviscid theory instead as 

Ay(s)  - aA J% h(s‘) 
- ds‘. 

a u, s N s ’ )  
(35) 

Although (35) is such that? lim,,sc Ay(s)  = 00, there is no reason to doubt its 
correctness even for the present case, provided only that s remains sufficiently 
large to exclude the boundary layer. However, one would have thought that by 
inserting a lower limit s = s,+S = sc+0.6479a(u’R)-), from (33), one might 
obtain a rough estimate for Ayla, and that this would consequently strongly 
depend on R. But (34) indicates that this is not so. 

The surprising behaviour of the surfaces of constant total pressure occurs 
entirely in the boundary layer. Here one deduces from (32) that their displace- 
ment is in fact larger at any distance O(S) from the cylinder than at the surface 
itself. The decrease in the displacement near the surface as (34) implies, must 
necessarily be of an amount sufficient just to cancel out any effects of the 

This remains the case even if the h and u obtained from viscous theory are inserted 
in (35). 
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Reynolds number. (To make these remarks seem more plausible, recall that in 
a Poiseuille flow too, a given total pressure surface lies further downstream 
anywhere in the channel than at the walls.) 

A difficulty remains, however, about what to do with the upper limit of (34), so, 
which has so far remained unspecified. The reason why it cannot be chosen equal 
to 00 here is that Ay turns out to behave as Ins, a t  large 8, for any cylinder whose 
effect at large distances upstream can be approximated by that of a line dipole, 
i.e. any closed cylinder in inviscid flow. For an unclosed cylinder, such as that 
formed by a line source, or a closed cylinder with a wake, this behaviour is 
evident in the secondary velocity itself. In  that case Ay grows linearly with so as 
s,-+co! This handicap seems to be an unavoidable, but not necessarily an 
erroneous, feature of the theory for an unbounded shear flow containing an 
infinite cylinder. 

It is almost certain, however, that the concept of unbounded shear flow is 
unrealistic at large distances. Not only are actual shear flows usually generated 
not very far upstream, but also, more importantly, they are in practice either 
bounded by walls or confined to layers. It seems physically unlikely that these 
lateral constraints would permit appreciable secondary flow to extend to a 
distance upstream of more than several times the typical lateral dimension d. 

The idea of a cut-off distance zo is therefore attractive. For the purposes of 
calculating the displacement effect, the secondary velocity would be presumed 
to begin only when the flow reaches z = x, = O(d). Lighthill (1957) considered a 
similar cut-off in connexion with the displacement effect for a source in a 
bounded shear flow, and in fact derived an integral expression for estimating 
this distance. It should be possible in principle to extend his methods to our 
cylinders, by regarding them as composed of suitable arrangements of line 
sources and sinks. But bearing in mind the complexity of the methods, and 
that this cut-off distance will generally vary from one streamline to another 
(even in the simple case of a uniform shear flow in a channel), we will not 
attempt to calculate z, here. It will suffice to remember that this distance depends 
only on the flow profile and boundaries, and neither on the size nor the shape of 
the cylinder. 

The displacement effects for the circular cylinder and the flat plate are worked 
out below as functions of the above-mentioned cut-off distance. If we could 
assume that u(s )  is accurately described by the potential flow around these 
cylinders, we would take ~ ( s )  from (22), and h(s) as implied by (25), integrate (34) 
and so find 

CC: Ay/a = (aA/Ul) 21ns,+-----,+ ...- 2.886 , 

FP: Ay/a = (aA/Ul) Ins,+---+ ...- 0.693 . 

4 3  

(36) 
( $0 2% 

1 1 1  ( so 6s; 

To be realistic, though, these bodies have to be considered together with their 
wakes. Let us represent a wake by a line source through the origin. Consequently 
the expression for u(s) takes the form 

u(s) i 1 - (CD/2n) s-l- (Potential flow terms of 0(,r2)). (37) 
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Here C, denotes the drag coefficient defined as the drag per unit length divided by 
pU,"a, and the fact has been used that the displacement thickness of a wake tends 
to gCD times the cylinder width. Applying equation (37) to (9), we see that the 
wake must thus contribute to the non-dimensional secondary flow velocity an 

(38) 
amount 

(as long as .s remains somewhat larger than unity). From (34) it then follows that 
this is responsible for displacing the total pressure surfaces by approximately an 
additional amount 

(39) 

which must be added to (36) for the combined effect of the cylinder and wake. We 
observe that when the drag coefficient is of order unity as here, then .so need not 
assume particularly large values before the contribution of the wake to the 
displacement effect becomes the dominant one. This is the case despite the fact 
that the fraction of the secondary velocity observed near the cylinder which has 
been caused by the wake may typically be only, say, a quarter of the total. 

&ake 9 (cD/n) In 

A y / a  = (aA/C<) (CD/n) (.so - In so), 

It is a pleasure to acknowledge my indebtedness both to Prof. M. J. Lighthill 
for a number of discussions on this topic and to the Marshall Aid Commemora- 
tion Commission for a scholarship. 
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